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On the rise of an ellipsoidal bubble in water:
oscillatory paths and liquid-induced velocity
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This work is an experimental study of the rise of an air bubble in still water.
For the bubble diameter considered, path oscillations develop in the absence of
shape oscillations and the effect of surfactants is shown to be negligible. Both the
three-dimensional motion of the bubble and the velocity induced in the liquid are
investigated. After the initial acceleration stage, the bubble shape remains constant
and similar to an oblate ellipsoid with its symmetry axis parallel to the bubble-centre
velocity, and with constant velocity magnitude. The bubble motion combines path
oscillations with slow trajectory displacements. (These displacements, which consist
of horizontal drift and rotation about a vertical axis, are shown to have no influence
on the oscillations). The bubble dynamics involve two unstable modes which have the
same frequency and are π/2 out of phase. The primary mode develops first, leading
to a plane zigzag trajectory. The secondary mode then grows, causing the trajectory
to progressively change into a circular helix. Liquid-velocity measurements are taken
up to 150 radii behind the bubble. The nature of the liquid flow field is analysed from
systematic comparisons with potential theory and direct numerical simulations. The
flow is potential in front of the bubble and a long wake develops behind. The wake
structure is controlled by two mechanisms: the development of a quasi-steady wake
that spreads around the non-rectilinear bubble trajectory; and the wake instability
that generates unsteady vortices at the bubble rear. The velocities induced by the
wake vortices are small compared to the bubble velocity and, except in the near wake,
the flow is controlled by the quasi-steady wake.

1. Introduction
Bubbly flows occur widely in both nature and industrial applications, including

energy production (e.g. oil transportation, steam generators, cooling systems) and
chemical engineering (e.g. bubbly columns, mixing in reactors, aeration systems). As
a result, their significant practical importance has motivated numerous investigations
during the past fifty years. However, despite this continuous effort, important questions
remain open and thus the study of bubble behaviour remains an important field
in fluid dynamics. The complexity is the result of the large number of interfaces
that separate the gas and the liquid, two fluids having drastically different physical
properties. In the first instance, this complicates theoretical and numerical approaches
since each interface moves with its own velocity and may deform under the action of
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the liquid. Furthermore, the measuring techniques that are well suited for one phase
are generally perturbed by the presence of the other phase.

The key problem in bubbly flows is to understand how the two phases interact.
A general strategy may consist in distinguishing (i) the effect of the liquid on the
bubbles, (ii) the effect of the bubbles on the liquid, and (iii) the role of the interactions
between bubbles. In this context, knowledge of the behaviour of an isolated bubble is
of major importance. It constitutes the reference situation for points (i) and (ii) in the
absence of bubble interactions (iii). The reader is referred to Magnaudet & Eames
(2000) for a recent review of the motions of an isolated bubble and to Risso (2000)
for a general description of bubble deformations.

In the current study the focus is on the rise of a single bubble in a still liquid.
Although this situation is elementary, it addresses numerous problems that are more
general in application. The rise of a bubble is a complex problem since it involves
interactions between the bubble deformation and the liquid flow field induced by
the bubble motion. For pure fluids, it involves two independent non-dimensional
numbers. Usually, one defines the Reynolds number (Re = Vd/ν) which controls
the flow regime around the bubble and the Weber number (We = ρV 2d/σ) which
characterizes the bubble deformation (where ρ and ν are the liquid density and vis-
cosity, σ is the interfacial tension, V is the bubble rise velocity). The bubble size is
commonly defined by the equivalent diameter, d, which is the diameter of the sphere
of the same volume (or by the equivalent radius, R = d/2). Let us consider the case
of an air bubble rising in water. It is known that small bubbles remain spherical and
their trajectory is rectilinear. Significant deformations appear for diameters larger
than 1 mm, in which case the bubble takes on an ellipsoidal shape. Non-rectilinear
trajectories are commonly observed for diameters ranging from 1.3 to 50 mm. Previous
investigators (Saffman 1956; Aybers & Tapucu 1969a) have reported different kinds
of trajectories: zigzag, helical path (also known as spiralling motion) and rocking
motions. Obviously, the occurrence of these different motions will depend on the
bubble diameter. However, they also depend on several complex mechanisms, includ-
ing the action of surface-active contaminants, the coupling between path and shape
oscillations, the initial conditions at the instant of bubble release and the presence of
finite-amplitude perturbations. Although previous investigators have made a signifi-
cant contribution, a general understanding of the problem is still lacking (see § 3.4 for
a complete bibliography). First, the exact experimental conditions – especially the level
of contamination – are often not precisely determined. In addition, the experimental
techniques rarely provide a full description of the interface. Frequently, the following
important issues are not addressed: Do the observed trajectories correspond to a
transitory stage or to a stable final motion? Are shape oscillations present or not?
What is the exact definition of zigzag and helical paths? The understanding of these
oscillatory motions is however a key issue for bubbly flows, even when the motion
of the continuous phase is turbulent. Indeed, it is only in microgravity condition that
the path fluctuations of large bubbles (1.5 6 d 6 50 mm for air bubbles in water) are
controlled by the turbulence (Risso 1999). In the normal gravity condition, the path
oscillations related to the liquid mean drift velocity are robust and largely contribute
to the bubble velocity fluctuations (Ford & Loth 1998). In most general situations,
the prediction of bubble motions thus requires that these oscillations be taken into
account.

The prediction of the velocity field induced by a moving bubble is another chal-
lenging problem (a complete bibliography is presented in § 4.1). Consider the liquid
velocity at a fixed point in space. While a bubble is passing close to this point,
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liquid velocity fluctuations will be observed. An important point is the nature of such
fluctuations. Even if the velocity field induced by the bubble is laminar and steady in
the frame moving with the bubble, fluctuations are observed in the fixed laboratory
frame. For oscillatory moving bubbles, the wake that develops behind the bubble is
unsteady (Lunde & Perkins 1997; Brücker 1999) and may be turbulent. The liquid
fluctuations are therefore due to different mechanisms of a different nature: steady
wake, potential flow outside the wake, wake vortices that detach from the bubble
rear and turbulence. Furthermore, these different phenomena produce a wide range
of length scales ranging from less than one tenth the bubble radius in the near flow
field up to several radii in the bubble wake. Hence the investigation of the liquid
velocity fluctuations in bubbly flows requires that two problems are overcome: first
the experimental techniques generally require the cutoff of a portion of the signal
corresponding to measurements detected close to the bubble (see Suzanne et al. 1998);
second, there are no established methods to distinguish between the different contri-
butions to the measured liquid fluctuations. Knowledge of the flow field induced by a
single bubble should allow the signal processing of the liquid velocity measurements
and thus provide a basis for the interpretation of the liquid velocity fluctuations in
general bubbly flows.

The objective of the present work is the description of the rise of a bubble in
still water for well-defined experimental conditions. The bubble size (d = 2.5 mm,
Re = 8 × 102, We = 3.6) is chosen to correspond to the regime in which path
oscillations are present but shape oscillations are not. It will be shown that the action
of any surface-active contaminants can be regarded as negligible. At each instant, the
full three-dimensional description of the interface is obtained by means of two high-
speed video cameras and digital video processing. The liquid velocity is measured by a
two-component laser Doppler anemometer, which is synchronized with the cameras.
The experimental technique allows detection of all the length scales from 0.05 up
150 times R. The measurements of the liquid velocity will be compared with the
predictions of the potential flow theory and the results of numerical simulations.

2. Experimental set-up
The experimental set-up is shown in figure 1. The test section was an open tank

of 700 mm height with a squared cross-section of 150 mm width. To allow full optical
access the four sides were of a glass construction. A stainless steel capillary tube
(inside/outside diameter 0.33/0.50 mm) was located in the midpoint of the tank base.
The tank was filled with tap water to a height of 650 mm above the capillary tip.
Individual bubbles were formed by injecting air through the capillary with an air flow
rate low enough (< 160 mm3 s−1) to ensure that the bubble volume at detachment was
controlled by a static balance between the surface tension and buoyancy. Measure-
ments, performed just after injection, confirmed that the bubble diameter remained
constant, d = 2.48± 0.02 mm. For the present experiments, the distance between two
successive bubbles was always large enough to prevent interaction.

The bubble interface was filmed by means of a Kodak Ektapro EM high-speed
video system at the rate of 1000 frames s−1. To allow a three-dimensional description
of the bubble behaviour, this system included the simultaneous use of two cameras.
The first camera was set perpendicular to one side of the tank, directed in the y-
direction. Floodlight 1 was located on the opposite side, facing camera 1. Owing to
the space constraints, camera 2 had to be oriented with an oblique angle, α, to the
tank side. Floodlight 2 faced the same tank side but with a symmetric orientation.
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Figure 1. Experimental apparatus.

LDA measuring volume (mm)

Bubble Window
equivalent Window elevation Pixel Angle of Number
diameter, width range size camera 2, Dimensions of

Set d (mm) (mm) (mm) (mm) α◦ δx, δy, δz Elevation runs

A 2.5 15 291.3–316.3 0.13 30 0.15, 0.04, 0.04 300 81
B 2.5 130 216.5–441.5 1.17 15 0.15, 0.04, 0.04 300 47

or
263.5–488.5

Table 1. Description of the experimental runs.

A mirror was used to reflect light, which then travelled through the bubble before
reaching camera 2. Consequently, cameras 1 and 2 provided images of the bubble
shadow onto the planes (x, z) and (y′, z), respectively.

The number of pixels available to describe the images was 122× 192 for camera 1
and 117×192 for camera 2. This resolution did not provide an accurate simultaneous
description of both the bubble shape and its trajectory. For that reason, we performed
two sets of experiments (see table 1). For set A, we used a small visualization window
(25 mm height and 15 mm width), which permitted a high resolution: the pixel size
was 0.13 mm. For set B, we chose a larger window, 130 mm wide and 225 mm high,
which led to a pixel size of 1.17 mm. Together, the results provided by these two
sets gave an accurate and complete description of the bubble shape, orientation and
motion, for elevations ranging from 215 to 490 mm. Each experiment was commenced
by recording the test region in the absence of a bubble and three images of the
calibrated grid. After the runs, the images of the bubble interface were stored on
videotape by means of an S-VHS VCR (Panasonic AG-7350).

The first step of video processing was to digitize each image using a Personal
Computer equipped with a graphic A/D card (Imascan) and a frame synchronizer
(GML PC TBC). The format of the digitized images is better than that of the camera:
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740× 574 pixels in 256 grey levels. Digitization was followed by the detection of the
pixels that define the bubble contour. This step was achieved using in-house software
based on classical image-processing algorithms: subtraction of the reference image
without bubble, thresholding, binarization, dilatations and erosions. The complete
procedure is described in detail by Ellingsen (1998) and is similar to that used by
Risso & Fabre (1998). On obtaining the bubble contour, it is possible to determine
the bubble projection seen by each camera. Measured lengths were converted from
pixels to millimetres using the calibration images. The linear variation of the optical
scale factor with the distance from the focal planes was corrected by an iterative
procedure that used the information supplied by the two cameras (these corrections
never exceeded 0.25%). Finally, the y-coordinate was determined by a rotation of
angle α about the z-axis.

The overall accuracy depends on the experimental set that is considered. For both
cases, the maximum error in the determination of the bubble contour was one pixel.
For set A, the resulting accuracy of the bubble characteristics is, however, significantly
better because of the larger number of pixels involved in their calculation. By
assuming that the errors made in the determination of the different contour points are
statistically independent, Ho (1983) provided an estimation of the standard deviation
of the error made in the determination of the bubble centre. For experiments of set
A, this theoretical estimation led to 0.05 pixel (0.007 mm). Tests using the calibration
grids and comparisons between the measurements provided by the two cameras
showed that the maximum errors were approximately seven times larger. Finally, we
found that the accuracy of the bubble-centre coordinates, lengths of the minor and
major axes and equivalent diameter was of ±0.05 mm. Concerning the determination
of the bubble-centre velocity, least-square fitting by equations (1) and (3) (see § 3.2)
gave an accuracy of ±0.1 mm s−1. For set B, it was only possible to determine the
bubble centre. The accuracy of the raw data was ±1 mm. However, by applying
an appropriate linear filter it was possible to reduce the errors in the bubble-centre
location and velocity to respectively ±0.2 mm and ±20 mm s−1.

In addition to bubble detection, a two-component laser Doppler anemometer
(LDA) was used to measure the liquid velocity at a fixed point located at the
tank centreline and 300 mm above the tip of the bubble injector. The LDA system
consisted of an Ar-ion laser source (Spectra Physics 2020 ion) with a DANTEC
optical arrangement that included two photo-multipliers equipped with green and
blue filters, and two Burst Spectrum Analysers (DANTEC 57N25 & 57N10). The
LDA provided measurements of the vertical component of the liquid velocity (z-
direction) and one horizontal component (y-direction). The two measuring volumes
were ellipsoids with a major axis of 0.15 mm in the x-direction, and two minor axes
of 0.04 mm in the y- and z-directions. All LDA measurements were made in forward-
scattering mode. However, owing to the small size of the measuring volumes, the data
rate was small. We thus added a few decigrams of Iriodin 111 to the water contained
in the tank. A comparison between experiments in the presence or absence of these
tracers indicated no significant differences in the bubble shape or motion. The data
rate after Iriodin addition ranged from 30 to 50 Hz. This is still low since the time
taken by a bubble to travel a distance comparable to its own diameter is about 0.01 s.
Because an experimental run was only interesting if a sufficient number of velocity
samples were recorded, only 128 data sets from 5000 were retained for analysis. Our
choice favoured the recordings where large velocities were detected. Consequently,
regions of small velocities were not explored.

The accuracy of LDA measurements is not possible to estimate a priori (especially
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for samples detected close to the bubble). We avoided the detection of spurious
samples by fixing the gain of the photo-multipliers to a low value and by remov-
ing measurements made when the LDA measuring volume intercepted the bubble.
However, as shown in § 4.2, the ultimate validation of the experimental procedure
is provided by the excellent matching between the measurements made close to the
bubble front and the prediction provided by potential flow theory.

In summary, the experimental set-up described above provided time recordings of
the two components of the liquid velocity when a rising bubble is passing close to a
fixed point located 300 mm above the injection point. Since the clocks of the LDA and
camera processors were synchronized, the location of the bubble interface relative to
the LDA measuring volume was known at each instant. The accuracy in the interface
detection was good enough to allow a description of all the scales that are present in
the flow surrounding the bubble.

3. Dynamics of bubble motions
In this section the focus is on the interface behaviour. The following general trends

are identified by visual inspection. When the bubble detaches from the injector,
its shape is essentially spherical and it rapidly accelerates in the vertical direction.
This first stage is followed by a period of reduced acceleration that leads to a
less flattened bubble shape and the commencement of horizontal path oscillations.
Beyond z = 150 mm the initial acceleration stage is achieved, the vertical velocity is
approximately constant and the path-oscillation frequency is regular. The purpose of
this work is to provide an accurate description of what happens during this period
of regular oscillations. For this reason, all the measurements are performed in the
region located between 215 and 490 mm above the injection point (see table 1).
The presentation of the results will be separated into three parts. First, the bubble
shape and orientation are described. This is followed by determination of the bubble
trajectory characteristics and the manner in which these characteristics evolve with the
elevation. Finally, the present results are compared with previous works and general
conclusions are made.

3.1. Bubble shape and orientation

Experimental set A provided pairs of high-resolution images (figure 2a). This did not
allow a direct determination of the bubble shape since only the projections on the
two vertical planes (x, z) and (y′, z) were available. Even if the bubble shape remains
constant, the detected contours vary as the bubble orientation changes. In order to
overcome this difficulty, we assume that (i) the bubble shape is an oblate ellipsoid of
constant shape, and (ii) its axis of symmetry is parallel to the bubble-centre velocity.
The bubble shape is thus totally defined by knowledge of its major axis (a) and its
minor axis (b). The orientation is fully determined by the angle φ between the bubble
velocity and the z-axis and the angle θ between the horizontal projection of the
velocity and the x-axis. Under these conditions, the projected contours are ellipses.
When φ = 0 their major axis (a′), and minor axis (b′) are respectively equal to a and
b. Figure 2(b) compares the measured contour with an exact ellipse at an instant when
φ = 0. The comparison was repeated for the 81 runs of set A. In all cases the measured
contour was similar to an ellipse with a major axis a = 1.58± 0.05 mm and a minor
axis b = 0.77 ± 0.05 mm. The aspect ratio was β = a/b = 2.05 and the equivalent
diameter d = 2.49 ± 0.05 mm. This is in agreement with the diameter measured at



Rise of an ellipsoidal bubble in water 241

(a)

(b) (c)

1.0

0.5

0

–0.5

–1.0
–1.5 –1.0 –0.5 0 0.5 1.0 1.5

x (mm)

z 
(m

m
)

–4 –2 0 2 4

x (mm)

–8

–6

–4

–2

0

2

4

6

8

10

12

14

z 
(m

m
)

Figure 2. Bubble images and interface detection (-----, detected contour; —–, exact ellipsoid). (a)
Images from the two cameras, (b) contour at the instant when the bubble rises vertically, (c) contours
at different instants.

injection (d = 2.48± 0.02 mm) since the effect of the reduction in hydraulic pressure
was negligible for the range of elevations investigated.

The assumptions (i) and (ii) described above were validated at the instants when the
bubble velocity is vertical. However it was necessary check them at other times. For
each run, the projection in the plane (x, z) of an oblate ellipsoid (the symmetry axis
of which is parallel to the measured bubble-centre velocity) is calculated. Figure 2(c)
shows a comparison between the contour calculated using the assumptions (i) and
(ii), and the measured contour. The excellent agreement indicated by this example
is also exhibited by all the other experimental runs. Figure 3 shows the major and
minor axes of the projected ellipsoid. Since the minor axis of the bubble is an axis of
symmetry, the major axis of the ellipse is constant and equal to the major axis of the
ellipsoid (a′ = a). On the other hand, the minor axis of the ellipse varies in time and
is larger than the minor axis of the ellipsoid (b′ > b). Thus it is possible to confidently
conclude that the bubble shape is similar to an oblate ellipsoid with an aspect ratio
β = a/b = 2.05. After the initial acceleration stage, the shape remains constant and
the bubble-centre velocity is parallel to the symmetry axis of the bubble.
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Figure 3. Time evolution of the principal axes of the bubble projection seen by camera 1. Measured
values (—–), major ( e) and minor (+) axes calculated by assuming an exact ellipsoidal shape.

3.2. Bubble motion close to z = 300 mm

The shape and orientation of the bubble being known, a complete description of the
interface requires the determination of the motion of the bubble centre. Using the
results of set A, the bubble motion in the region near 300 mm above the injection
point is first investigated (291.3 6 z 6 316.3 mm). Figures 4–6 show three examples
of bubble motion recordings. Since the amplitude of vertical oscillations is weak,
the effect of the mean vertical velocity (which is 〈Vz〉 = 309 mm s−1 for all runs)
has been subtracted in the representation of the vertical coordinate (figures 4–6a).
These recordings clearly indicate the existence of oscillations in both the horizontal
and vertical directions. The frequency of the vertical oscillations is larger than that
of the horizontal oscillations whilst the amplitude is significantly smaller. Unfortu-
nately, these recordings are shorter than one complete period of oscillation and so
the following method was developed to accurately determine the oscillation char-
acteristics. For each recording, we assume that the horizontal coordinates may be
written:

x(t) = lx sin (ω(t− tx0)) + x0, y(t) = ly sin (ω(t− ty0)) + y0, (1)

where t is the time. The angular frequency ω, the amplitudes lx and ly , the time
origins tx0 and ty0 and the spatial origins x0 and y0 were determined for each run
by least-square fitting of the experimental results. This procedure showed that the
angular frequency was the same for all the 81 runs: ω = 39 rad s−1. This value will be
confirmed in § 3.3 from the longer duration recordings represented by set B. Therefore
it was considered appropriate to impose this value for the determination of the other
parameters. The corresponding fitted results are in agreement with the measurements
(figures 4–6b, c).

Equation (1) is of interest from a signal-processing point of view. By eliminating
the noise due to the finite pixel size, it allows an accurate determination of the bubble
velocity. In addition it allows interpolation of the signals in the region where bubble
detection is prevented by the presence of the laser beams. However (1) is also of
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Figure 4. Time evolution of the bubble-centre coordinates: example of plane trajectory from set A.
(a) Vertical coordinates, (b) horizontal coordinates, (c) projection of the trajectory on a horizontal
plane: symbols represent measurements, lines correspond to least-square fitting (equations (1) and
(3)).

interest in a broader sense. The horizontal projection of the trajectory is an ellipse,
the major axis of which is the same for all the runs. This suggests that it is possible
to apply to each trajectory a rotation about a vertical axis to ensure coincidence of
the major axis of each ellipse. The rotation angle is determined analytically from the
parameters lx, ly, tx0, ty0 that were previously estimated by least-square fitting. In this
principal frame (ξ′, η′), (1) becomes

ξ′(t) = Lξ sin (ω(t− τ)) + ξ0, η′(t) = εLη cos (ω(t− τ)) + η0. (2)

In this way the amplitude of the principal oscillation is the same for all the runs
(Lξ = 4.3 mm). The frequency ω is still equal to 39 rad s−1 and ε to +1 or −1 depending
on which direction the bubble moves on the ellipse. The only remaining adjustable
parameters are the amplitude of the secondary oscillations, Lη , the time origin, τ,
and the coordinates of the ellipse centre, ξ0 and η0. They are again determined by
least-square fitting of the experimental bubble coordinates which were previously
expressed in the principal frame.
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Figure 5. As figure 4 but showing an example of flat helical path from set A.

From the comparison of ξ′ and z, it is clear that the frequency of the vertical
oscillations is twice that of the horizontal ones and that the phase difference between
oscillations in the z- and ξ′-directions is equal to π. The vertical bubble coordinate
may hence be written

z(t) = Lz sin (2ω(t− τ)) + 〈vz〉t+ z0. (3)

The amplitude of these weak oscillations, Lz = 0.35 ± 0.05 mm, and the mean rise
velocity, 〈vz〉, are independent of the run being considered. The time origin τ having
been determined from the horizontal components, the only adjustable parameter is the
vertical origin z0, which is again determined by least-square fitting. The comparison
between the (3) and the experimental results is presented in figures 4–6a.

It is now possible to compare the trajectories for the different runs. In addition to
the rotation, we apply to the measurements the translation defined by: ξ = ξ′ − ξ0,
η = η′ − η0, ζ = z − z0 (see figure 7). Figure 8 presents the results of 71 different
runs in the principal frame (ξ, η, ζ). The projections of all the trajectories on the
plane of primary oscillations (ξ, ζ) coincide closely. The secondary oscillations – plane
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Figure 6. As figure 4 but showing an example of helical path from set A.

(η, ζ) – are π/2 out of phase relative to the primary oscillations. Their amplitude, Lη ,
varies from one run to the next. In most cases, Lη is small compared to Lξ . For 40%
of the occurrences Lη is less than 0.06Lξ and for 90% less than 0.23Lξ . In addition,
the maximum value of Lη observed is 0.6Lξ . The trajectories are thus quite similar to
plane zigzags but can more generally be described by flattened helixes. Finally, after
a displacement (translation and vertical rotation) and a change of time origin the
motion of all the observed bubbles may be described within the limit of experimental
errors (±0.05 mm) by the following equations:

ξ(t) = Lξ sin (ωt), (4)

η(t) = εLη cos (ωt), (5)

ζ(t) = Lζ sin (2ωt+ π) + 〈vζ〉t, (6)

where ω = 39 rad s−1, Lξ = 4.3 mm, Lζ = Lz = 0.35 mm, 〈vζ〉 = 〈vz〉 = 309 mm s−1,
ε = ±1, and Lη < Lξ . The bubble motion is now fully characterized in a small
region centred 300 mm above the injection point. This motion is characterized by
two modes of horizontal oscillations with the same frequency, in two perpendicular
directions and with a phase difference of π/2. The amplitude of the primary mode
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Figure 8. Superimposition of 71 bubble trajectories in the principal frame of oscillation.

is determined while that of the secondary one depends on the experimental runs.
The vertical motion shows weak oscillations at twice the frequency of the horizontal
motion. Their amplitude, their phase and the mean rise velocity are determined.

At this point, we propose the following interpretation. The rectilinear trajectory is
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Figure 9. Bubble-centre coordinates and velocity in the laboratory frame: case 1 from set B. (a)
Vertical projections of the trajectory, (b) horizontal projection of the trajectory, (c) time evolution
of the horizontal coordinates, (d) time evolution of the velocity components and magnitude.

unstable. The initial conditions correspond to the detachment of a bubble from the tip
of the injector in a tank filled with water at rest. However, as is to be expected in any
experiments, small initial perturbations are present, owing to which plane oscillations
develop and the trajectory becomes a plane zigzag. The phase and direction of the
oscillations are random, indicating that the initial perturbations are random also.
At 300 mm above the injection point, the amplitude of the first unstable mode is
saturated and independent of the initial perturbations. However, the plane zigzag is
also unstable and a second mode of oscillations develops. Its amplitude is not yet
saturated and still depends on the initial perturbations. Finally, it is worth noting
that for strong initial perturbations (Saffman 1956), it is possible to observe a helical
motion without first observing the transitory zigzag motion.

3.3. Evolution of the bubble motion with height

Having characterized the bubble motion in the region 300 mm above the injection
point by equations (4)–(6), the objective becomes to determine whether this motion
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Figure 10. As figure 9 but for case 2 from set B.

evolves with height. In particular, we intend to use the results of set B to determine
how the parameters ω, Lξ , Lζ and 〈vζ〉 change with height.

Figures 9 and 10 show the results of two different runs (hereafter referred to case
1 and 2). Let us consider first case 1. The evolution of x and y versus z (figure 9a)
or time (figure 9c) show regular oscillations with a wavelength close to 50 mm and
an angular frequency of 39 rad s−1. This is in agreement with the results obtained
near z = 300 mm. However, the projection of the trajectory onto the horizontal plane
(figure 9b) is neither a straight line nor an ellipse and is thus not compatible with
equations (4) and (5). Inspection of the time evolution of the velocity (figure 9d)
shows that the only difference with (4) and (5) is the existence of an additional
constant drift velocity. By removing this velocity from the measurements, a plane
zigzag motion is obtained. Since the evolution of x and y are half a period out of
phase, the principal directions of oscillations are obtained by a rotation of 45◦ about
the vertical axis. Case 2 (figure 10) is more complex. A constant drift is observed in the
y-direction. However figure 10(b) shows that the principal directions of oscillations
are also continuously changing. In order to obtain a motion compatible with (4) and
(5), it would be necessary to apply a rotation about a vertical axis, the angle of which
continuously changes with the elevation z.
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All the experimental runs belonging to set B confirm the above trends. The wave-
length and the frequency of the oscillations remain unchanged the latter will be
ascertained by the analysis in the principal frame of oscillations. Sometimes, the
trajectory is a plane zigzag or a flattened helix compatible with (4) and (5). At other
times, the motion is the same except for the presence of an additional horizontal
constant drift. It is also possible to observe times for which is no mean drift, but
the principal axes of oscillations rotate during the motion. Finally, we also observe
combinations of a velocity drift and a continuous rotation. These rotation and drift
effects are not reproducible. It is hence not possible to describe them from a deter-
ministic point of view. Thus, it was considered appropriate to try to remove these
effects from the experimental results.

Consider the horizontal components of the bubble velocity, vx(t) and vy(t). The
removal of the constant drift is achieved by subtracting the average velocity of each
recording: we thus obtain the centred signals v′x(t) and v′y(t). Removing the rotation
effect is more complex. The results of § 3.2 showed that, for a short duration, v′x(t)
and v′y(t) are harmonic functions. This suggests that they are harmonic functions with
amplitudes that slowly vary in time:

v′x(t) = lvx(t) sin (φx(t)), v′y(t) = lvy(t) sin (φy(t)). (7)

This decomposition can be achieved from the Hilbert transform (Melville 1983) HF,
of the signal v′x(t), obtained from the Fourier transform, FT:

HF [v′x(t)] = FT−1[−i sgn(f)FT [v′x(t)](f)]. (8)

The amplitude and the phase are then given by

lvx(t) = |v′x(t) + iHF [v′x(t)]|, φx(t) = Arg {v′x(t) + iHF [v′x(t)]}. (9)

The determination of lvy(t) and φy(t) is similarly obtained from the Hilbert transform
of v′y(t). Knowledge of the instantaneous amplitudes, lvx and lvy , and phase differences,
φx−φy , allows the determination of the instantaneous principal directions of oscilla-
tions. Then, by applying a rotation, the principal amplitudes of oscillations, Lvξ and
Lvη , are obtained. Figures 11 and 12 present the results of this treatment for cases 1
and 2.

Initially the focus is on case 1. Figure 11(a) shows the instantaneous amplitudes,
lvx and lvy , of the velocity oscillations visible in figure 9(d). The time derivatives of
φx and φy (figure 11b) are the angular frequency of these oscillations. Since φx(t)
and φy(t) are two straight lines with the same gradient, the oscillation frequencies of
vx and vy are equal and constant (39 rad s−1). In the principal frame (figure 11c), the
amplitude of the primary mode is constant (Lvξ = 0.15 m s−1) (the residual variations
are smaller than the measurement accuracy, which is ±20 mm s−1) and the amplitude
of the secondary mode is negligible: the motion is thus similar to a plane zigzag. This
is clearly illustrated by the comparison of figures 9(b) and 11(d). After rotation and
drift removal, the projection on the horizontal plane becomes a horizontal straight
line. Next case 2 is considered (figure 12). In the laboratory frame, the evolution of
the amplitude is complex (figure 12a). However in the principal frame, the amplitude
of the primary mode is constant (Lvξ = 0.16 m s−1) and that of the secondary mode
increases in a regular way. After rotation and drift removal, the trajectory is thus
similar to a flattened helix that progressively becomes less and less flattened. The
projection on the horizontal plane (figure 12d) is an ellipse, the major axis of which
is constant while the minor axis is continuously increasing.

The same treatment applied to all the runs of set B leads to the following general
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Figure 11. Bubble-centre velocity: case 1 from set B. (a) Amplitudes and (b) phases of the two modes
of oscillations in the laboratory frame, (c) principal amplitudes of the two modes, (d) horizontal
velocity in the principal frame of oscillation.

conclusions. The frequencies of the two modes are equal and constant (ω = 39.4 ±
1 rad s−1) and the amplitude of the primary mode is constant (Lvξ = 0.16±0.02 m s−1).
Concerning the amplitude of the secondary mode, two different situations may be
distinguished. The first one corresponds to case 1: Lvη is negligible and remains
so during the whole recording duration. The second is analogous to case 2: Lvη
continuously increases during the duration of observation. After rotation and drift
removal, the horizontal oscillations thus still obey equations (4) and (5). Concerning
vertical oscillations, the results show that the velocity magnitude, V , is constant for
all the considered runs and elevations:

V = (v2
ξ + v2

η + v2
ζ )

1/2 = 0.325± 0.02 m s−1. (10)

By taking of derivative of (4) and (5) and combining with (10) one finds

vζ(t) = V {1− (ωLξ/V )2 cos2 ωt− (ωLη/V )2 sin2 ωt}1/2. (11)

By assuming that the trajectory is a plane zigzag (Lη = 0) and that the oscillations
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Figure 12. As figure 11 but case 2 from set B.

are small compared to the velocity magnitude (ωLξ/V � 1), integration of (11) yields

ζ(t) = {1− 1
4
(ωLξ/V )2}Vt+ ( 1

8
ωL2

ξ/V ) sin (2ωt+ π) + O({ωLξ/V }3). (12)

In the limit of measurement accuracy, the values of 〈Vζ〉 and Lζ in (6) are equal to
the coefficients of t and sin (2ωt + π) in (12). Equation (6) may be considered to be
an approximation of (10) for plane zigzag motions. The weak oscillations that were
observed in the vertical direction seem to be driven by the horizontal oscillations
under the constraint imposed by a constant velocity magnitude. Now, by assuming
that the trajectory is a circular helix (Lξ = Lη = L), the following relation is found:

ζ(t) = {1− 1
2
(ωL/V )2}Vt. (13)

This suggests that, when the amplitude of the secondary mode is equal to that of the
primary mode, the vertical velocity will reach a constant value. One may also expect
that the mean vertical velocity should decrease as the amplitude of the secondary
mode increases.

In the principal frame of oscillations, the velocity of the bubbles may finally be
described by

vξ(t) = Lvξ cos (ωt), (14)
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vη(t) = εLvη sin (ωt). (15)

vζ(t) = (V 2 − V 2
ξ − V 2

η )1/2. (16)

Figure 13 presents the spatial evolution of the trajectory characteristics. They are
determined for each elevation by averaging over the 47 runs of set B. The amplitude
Lvξ (0.16±0.01 m s−1) and the velocity V (0.325±0.005 m s−1) do not evolve with z. The
growth of the secondary mode, Lvη , is clearly visible since its average value increases
from 0.02 to 0.055 m s−1 when z increases from 290 to 460 mm. A slight decrease of
the mean vertical velocity 〈vz〉 is also observed, from 0.31 to 0.29 m s−1. This can be
attributed to the observation that the velocity magnitude remains constant whilst the
amplitude of the horizontal oscillations increases.

The interpretation proposed at the end of § 3.2 is thus confirmed. After the initial
acceleration stage, the velocity magnitude reaches an almost constant value. Oscilla-
tions develop in a horizontal direction. The amplitude of this primary unstable mode
is saturated at 300 mm above the injection point. A second unstable mode is also
frequently observed. It is characterized by oscillations in the perpendicular horizontal
direction, at the same frequency and π/2 out of phase relative to the primary mode.
The amplitude of the second mode at z = 300 mm is weak and depends on the run
considered but increases with the elevation. Importantly, it never reached its saturated
value within the region under investigation (z 6 490 mm). The existence of these two
modes should lead to the observation of an initial rectilinear path, which first changes
into a plane zigzag as the primary mode grows and then transforms into a helix as
the second mode develops. The actual paths are however more complex owing to the
existence of a weak drift of the trajectory centre and a slow rotation of the principal
directions of oscillations. This drift and rotation is not reproducible. However, since
they are shown to have no influence on the oscillations, it is legitimate to analyse the
motion in the principal frame of oscillations.

3.4. Comparison with other studies and discussion

The present work focuses on air bubbles rising in still water. Their equivalent diameter
is d = 2.5 mm. The measured velocity magnitude is V = 0.325 m s−1. This corresponds
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to a Reynolds number, Re = Vd/ν, of 8× 102, and a Weber number, We = ρV 2d/σ,
of 3.6. Having analysed the motion of bubbles under these conditions it is appropriate
to make comparisons with previous results available in the literature.

Moore (1965), El Sawi (1974) and Miskis, Vanden-Broeck & Keller (1981) have
proposed theoretical predictions of the bubble shape based on the potential flow
theory. Their studies all lead to the same conclusion that for Weber numbers greater
than approximately 3.2 no axisymmetric steady solution exists. This is in contrast with
the present experiments where a steady axisymmetric shape for We = 3.6 was clearly
observed. Moreover, Miskis et al. (1981) predicted a Weber number of 2.8 for the
bubble aspect ratio observed here. Ryskin & Leal (1984) and Blanco (1995) performed
direct numerical simulations of axisymmetric deformable bubbles. No simulations are
available for the present parameters. Ryskin & Leal found aspect ratios of β = 1.5
for (Re = 2×102, We = 3) and β = 1.85 for (Re = 2×102, We = 4). Blanco obtained
β = 1.85 for (Re = 3.8 × 102, We = 3.4). Although these results are not directly
comparable to the results presented here, they clearly demonstrate that axisymmetric
shapes exist for Weber numbers greater than 3.2. This conclusion is confirmed by the
experimental investigations of Aybers & Tapucu (1969a) and Duineveld (1994, 1995).

In two companion papers, Aybers & Tapucu (1969a, b) performed an extensive
experimental investigation of air bubbles rising in water for 0.8 6 d 6 4 mm. The
bubble shape was determined from photographs. Since images were taken in one
plane only, the authors could not determine the bubble aspect ratio for any bubble
orientation. Consequently the photographs were taken close to the injection point
(0 6 z 6 40 mm), during the initial accelerating stage where the bubble motion was
rectilinear. They presented the measured aspect ratio versus both the bubble diameter
and the Weber number. For the same diameter as the present study (d = 2.5 mm),
Aybers & Tapucu (1969b) find a larger deformation (β = 2.5) than that found here.
This difference is due to the fact that the maximal bubble velocity during the initial
rectilinear stage is greater than the terminal velocity reached on oscillating paths. For
the same Weber number (We = 3.6), they however find the same aspect ratio as that
reported here. More recently, Duineveld (1995) investigated the rise of air bubbles in
ultra-purified water by means of a high-speed video camera. The study is limited to
rectilinear rising bubbles since the diameters under consideration varied from 1 to
2 mm. In this range, Duineveld finds that the aspect ratio is an increasing function of
the diameter (the value β = 2 is reached at d = 2 mm). Using the fitting proposed by
Duineveld to extrapolate the results for greater diameters, it is found that β = 2.8 for
d = 2.5 mm. This is not in contradiction with the present result. The rise velocity is
an increasing function of the diameter up to d = 1.8 mm where it reaches a maximum
and then decreases. Consequently there exists a diameter close to 2 mm beyond which
the Weber number starts to decrease also. As the deformation remains an increasing
function of the Weber number, the aspect ratio becomes a decreasing function of the
bubble diameter. The relationship proposed by Duineveld between the aspect ratio
and the Weber number leads to We = 3.4 for β = 2.05, which is similar to the current
result.

Concerning the bubble orientation, Saffman (1956) was the first to assume that,
during path oscillations, the revolution axis of the bubble is at each instant parallel
to the bubble-centre velocity. This was experimentally observed by Duineveld (1994)
and Lunde & Perkins (1998). From full three-dimensional interface detection, the
present work provides a definitive confirmation of this point.

The comparisons with the different results available seem to indicate that the
relationship between the Weber number and the aspect ratio is independent of the
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motion type (i.e. rectilinear at constant speed, rectilinear accelerated or oscillating
paths). The fact that the velocity magnitude and orientation remains constant after
the initial acceleration stage seems to explain the observation that the bubble shape
remains fixed during zigzag and helical path oscillations. Of course, this result does
not hold for large bubbles for which the Weber number is again an increasing
function of the diameter. Indeed, for large Weber numbers the surface tension cannot
maintain a constant bubble form and so shape oscillations appear. Duineveld (1995)
experimentally determined that the onset of shape oscillations occurs at We = 4.2.
Later, Lunde & Perkins (1998) observed shape oscillations for d = 3.52, 4.32 and
5.16 mm and analysed their coupling with path oscillations.

Path oscillations have been investigated by numerous experimenters including
Haberman & Morton (1954), Saffman (1956), Hartunians & Sears (1957), Aybers
& Tapucu (1969a, b), Mercier, Lyrio & Forslund (1973), Tsuge & Hibino (1977),
Duineveld (1994, 1995), Lunde & Perkins (1997, 1998), Ellingsen & Risso (1998)
and Ford & Loth (1998). Different regimes exist depending on the equivalent bubble
diameter. Small bubbles and large spherical caps rise on a straight line. Between these
two limits, bubbles of intermediate size perform path oscillations. For air bubbles
in tap water, Aybers & Tapucu (1969a) reported the following: rectilinear motion
for 0 6 d 6 1.34 mm, helical motion for 1.34 6 d 6 2 mm, plane zigzag changing
into helical path for 2.00 6 d 6 3.60 mm, plane zigzag for 3.60 6 d 6 4.20 mm and
rocking motion for d > 4.20 mm. These general trends qualitatively agree with other
works. Nevertheless, the occurrence of zigzag and helical paths has been shown to
depend either on initial conditions or small perturbations (Saffman 1956; Lunde &
Perkins 1997). In some circumstances a perturbed zigzag may transform into a helix,
although the reverse has never been observed. Furthermore, the onset of the different
regimes depends on the presence of surface-active contaminants (Hartunians & Sears
1957; Tsuge & Hibino 1977; Aybers & Tapucu 1969a; Bel Fdhlia & Duineveld 1996).
Using ultra-purified water, Duineveld (1995) showed that path oscillations start for
a diameter significantly greater than that determined by Aybers & Tapucu (1969a):
d = 1.82 mm (We = 3.3, Re = 660). Since tap water was used in the current study,
it is necessary to determine whether the results of the present work are influenced
by the presence of surface-active contaminants. As the bubble moves, the surfactants
deposit on the surface and are swept from the front to the rear. This means that the
contaminants tend to accumulate at the rear of the bubble as the velocity increases.
By adding well-defined quantities of surfactant in the continuous phase, Bel Fdhlia
& Duineveld (1996) showed that the presence of surfactants has no effect on the
bubble dynamics once the surfactants are concentrated in a small region close to
the bubble rear. This was confirmed by Cuenot, Magnaudet & Spennato (1997) from
direct numerical simulations. Concerning bubbles rising in water, several investigators
(Aybers & Tapucu 1969a; Duineveld 1994) have observed that the effect of surfactants
diminishes as bubble size increases. Beyond a certain bubble size, and provided the
experiment duration is not too long, the behaviour of bubbles rising in tap water
can be considered to be the same as bubbles in pure water. For bubbles larger than
d = 2.4 mm, Lunde & Perkins (1998) showed that surfactant effects are negligible. Is
it also the case for the tap water used here? Duineveld (1994) measured the mean rise
velocity and path oscillation frequency of bubbles in ultra-purified-water, and found
that: 〈vz〉 = 0.292 m s−1 and ω = 40.2 rad s−1 for d = 2.3 mm and 〈vz〉 = 0.294 m s−1,
ω = 44.0 rad s−1 for d = 2.68 mm. Duineveld also measured the velocity magnitude for
the smallest bubble: V = 0.335 m s−1 for d = 2.3 mm. These values are in agreement
with the present result: 0.29 6 〈vz〉 6 0.31 m s−1, V = 0.325 m s−1 and ω = 39.4 rad s−1
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for d = 2.5 mm. This agreement allows one to conclude that all the present results
are representative of the behaviour of a rising bubble in a pure liquid. This will be
confirmed later from the measurements of the continuous-phase velocity.

The present work is limited to a single bubble diameter (d = 2.5 mm, We = 3.6).
The comparison with the other studies allows an assessment of the range of validity of
the present results. First, the bubble diameter is large enough for path oscillations to
be observed (d > 1.82 mm, We > 3.3) whilst the effect of impurities can be neglected
(here, this is true for d larger than about 2.0 mm). Second, the diameter is small
enough to avoid shape oscillations (d 6 3.5 mm, We 6 4.2). The present results are
thus representative of the first regime of path oscillations of a clean bubble, from
the onset of path oscillations up to the threshold of shape oscillations.† From the
full three-dimensional detection of the bubble interface, the present work provides
an accurate characterization of this regime. Our observations show that two unstable
modes develop successively. The growth of the first one leads to a plane zigzag motion,
whilst the growth of the second mode causes the zigzag to change into a helix. In
the region under investigation here, the saturation of the second mode was never
achieved. For greater elevations, Aybers & Tapucu (1969a) observed that the final
trajectory was always a circular helix. Saffman (1956) showed that a perturbed plane
zigzag could transform into a helix, while the reverse never happened. In the regime
considered, the circular helix is therefore the only stable trajectory.

Finally, it is worth noting that, owing to the constant relative orientation and shape
of the bubble, the wake instability is the only possible cause of the path oscillations
observed here. The prediction of the bubble motion thus requires taking into account
the interaction between the bubble and the unsteady wake.

4. Liquid-induced velocity
Now, the focus is on the liquid velocity induced by the bubble motion. We will

consider the time recordings of the two components of the liquid velocity measured
at the centre of the test section, 300 mm above the injection. Each velocity sample
will be analysed by taking into account the instantaneous location and orientation of
the bubble.

4.1. Available results concerning the liquid velocity induced by a rising bubble

Before presenting the experimental results, it is appropriate to review the available
knowledge. The potential flow around an ellipsoidal bubble moving at constant
speed provides a fundamental reference since the corresponding liquid-velocity field
is known analytically (Batchelor 1967, p. 455). In this case, the velocity has fore–aft
symmetry and the velocity magnitude decays as the reciprocal of the cube of the
distance to the bubble. Moore (1963, 1965) used the classical boundary layer theory
and concluded that the influence of the viscosity on the liquid flow field induced by a
moving bubble scales as Re−1/2. As a consequence, it is often asserted that the velocity
induced by a clean spherical bubble is predicted well by potential theory for Reynolds
numbers greater than a few hundred (Biesheuvel & van Wijngaarden 1984). From
direct numerical simulations of the flow past an axisymmetric ellipsoidal bubble of
fixed shape, Dandy & Leal (1986) showed that Moore’s approach is not valid for a
deformed bubble. The effect of interface curvature has to be taken into account since

† The first regime observed by Aybers & Tapucu (1969a), 1.34 6 d 6 2 mm, was influenced by
surfactants.
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it may cause flow separation for certain Reynolds numbers and aspect ratios (β).
Using a method similar to Dandy & Leal’s, Blanco & Magnaudet (1995) confirmed
and extended this result. In particular, they determined the region in the (Re, β)-plane
in which a standing eddy exists behind the bubble. The case under consideration here
belongs to this region.

There is some experimental evidence for the existence of a significant wake behind
rising bubbles. Most of this evidence has been obtained from visualization techniques.
By taking photographs of a bubble rising from a region of high dye concentration,
Maxworthy (1967) was the first to observe the unsteady wake behind a large rocking
bubble (d ≈ 17 mm). Using solid tracers in the liquid phase, Lindt (1972) and Lindt
& De Groot (1974) observed helical vortices in the wake of bubbles with oscillating
paths in water–glycerol solutions of different concentrations. By using small hydrogen
bubbles as tracers, Bhaga & Weber (1981) visualized both steady wakes with a
standing eddy and open unsteady wakes behind rectilinear rising bubbles in different
viscous liquids. Lunde & Perkins (1997) used a visualization technique similar to that
of Maxworthy (1967) and provided a detailed description of the wake behind bubbles
that followed helical, zigzag or rocking paths. Their results seem to indicate that
helical paths are associated with the existence of two attached vortex filaments in the
wake, though zigzag or rocking motions are related to the shedding of hairpin vortices.
More recently, Brücker (1999) used particle image velocimetry (PIV) combined with
high-speed video recordings to provide simultaneous measurements of the bubble
shape and the liquid velocity around an air bubble rising in water. In this case, the
bubble diameter ranged from 4 to 8 mm and thus belonged to the regime where
shape oscillations exist and are coupled with path oscillations. Brüker confirmed and
detailed the observations of Lunde & Perkins (1997): ‘[. . .] the zigzagging motion
is coupled to a regular generation and discharge of alternate oppositely oriented
hairpin-like vortex structures’; ‘For spiralling bubbles [. . .] the wake consists of a
twisted pair of streamwise vortex filaments which are wound in an helical path and
are attached to the bubble base at an asymmetrical position’. The existence of a wake
behind bubbles rising on oscillating paths is thus well-established. The relationship
between the near-wake structure and the bubble trajectory is qualitatively understood.
Nevertheless, as far as we know, the nature of the flow field in front of the bubble and
the decay of the liquid velocity perturbation in the wake are yet to be investigated.

Far behind a rectilinear moving bubble, the liquid velocity may be assumed to
be quasi-parallel. By using the boundary layer approximations in the wake and a
momentum balance over a large volume around the bubble, one obtains the liquid
velocity in the far wake (Batchelor 1967, p. 348):

uz/V = 1
16
Reβ2/3Cd(R/z) exp {− 1

8
Re(r/R)2(R/z)}, (17)

where R is the bubble equivalent radius, r the distance to the axis of symmetry, and z
the distance along the axis of symmetry. Here, the drag coefficient, Cd, is based on the
major axis, a, of the ellipsoid and the hydrodynamic force, T , exerted on the bubble:

Cd = 2T/
(
πa2ρV 2

)
. (18)

The major drawback of (17) is that the distance beyond which the approximation
becomes valid in not known. To obtain a better theoretical base for comparison with
the experimental results, axisymmetric DNS of the flow field around an ellipsoidal
bubble of fixed shape moving at constant velocity have been performed. The present
simulations are similar to those of Blanco & Magnaudet (1995) and were obtained
using the same code. In the current simulations the computational domain was
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extended to compute the far wake (up to 150R) and the parameters were chosen
to correspond to the present situation (Re = 8 × 102, β = 2.05). The calculation
was conducted in the frame of reference in which the bubble was fixed, with a
constant and uniform velocity imposed far upstream and a free exit condition applied
far downstream. After each simulation, the results were expressed in the laboratory
frame where the bubble was considered to be moving at constant speed. The mesh
grid was ellipsoidal and exactly followed the bubble shape. Furthermore, the mesh was
refined in the boundary layer near the bubble (first mesh spacing of 0.0056R) and on
the symmetry axis in the wake (transversal mesh spacing from 0.00482 at the bubble
rear to 0.055R at 150R behind). Several tests demonstrated that this mesh resolution
allowed an accurate description of all the flow length scales. In order to investigate
the possible influence of surface-active contaminants, different boundary conditions
at the bubble surface were tested. The effect of the surfactants was modelled by the
presence of a rigid cap which extended from the rear of the bubble up to the angle θ
(figure 14). On the rigid cap region, a non-slip-velocity boundary condition was used
whilst elsewhere a zero tangential shear-stress condition was imposed. The validity of
this model was established by Cuenot et al. (1997) for slightly soluble surfactants by
means of DNS of both the Navier–Stokes and surfactant-concentration equations.

Since the numerical code solves unsteady problems, the computations were started
from a uniform velocity field. The present axisymmetric simulations always converged
towards a stable steady solution. However, it must be remembered that this solution
is unstable in real three-dimensional space and leads to oscillatory bubble motion.
Consequently, the axisymmetric solution is not expected to exactly match the exper-
iments. Nevertheless, it constitutes a useful reference case for making comparisons.
Figure 14 shows the drag coefficient plotted against the rigid cap angle. It is evident
that Cd varies from the value corresponding to a clean bubble (θ = 0, Cd = 0.103) up
to the value corresponding to a solid ellipsoid (θ = 180◦, Cd = 0.322). This variation
is not smooth. For θ 6 50◦, the departure from the clean bubble is negligible. For
50◦ < θ < 120◦, Cd increases quickly whilst for θ > 120◦, the value of Cd is that of the
rigid particle. For all θ, the flow behind the bubble is separated and a standing vortex



258 K. Ellingsen and F. Risso

100

10–1

100 101 102

(e)

(c)(b)

(a)

(d)

z/R

uz

V

Figure 15. Decay of the vertical velocity on the symmetry axis behind the bubble: curve (a)
DNS with θ = 0 (clean bubble); (b) DNS with θ = 84◦ (partially contaminated bubble); (c) DNS
with θ = 180◦ (rigid bubble); (d) potential flow theory; (e) far-wake theory (equation (17) with
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is present. Figure 14 also shows the maximal vertical liquid velocity, uz max, which is
due to the presence of the vortex. For a clean bubble uz max is equal to the bubble
velocity while for a fully contaminated bubble it is 2.3 times greater. This maximal
velocity may thus be used to detect the presence of surfactant effects.

By identifying the drag force, T , with the buoyancy in (18) and using experimental
values of V and β, the experimental drag coefficient is obtained:

Cd = 4
3
(dg/V 2)β−2/3 ≈ 0.2. (19)

This value is two times larger than the one predicted by the axisymmetric DNS for a
clean bubble. One could suppose that such a discrepancy was due to the presence of
surfactants (the experimental value is indeed obtained for θ = 84◦). However, there
are arguments indicating that this explanation is not correct. In the first instance,
for θ = 84◦, a maximum velocity approximately twice the bubble velocity should
be detected in the liquid. From the results to be presented here (figures 15 and 20)
it is shown that measured liquid velocities never exceeded 1.05 times the bubble
velocity. Also, the experiments that were carried out by Duineveld (1994) in ultra-
purified water led to the same bubble velocity as reported here. As claimed in § 3.3,
the present bubble can be considered as hydrodynamically clean. The discrepancy
between experiments and DNS is due to the fact that axisymmetric simulations
provide unrealistic stable steady solutions. Our opinion is that the development of
wake instabilities in real three-dimensional situations causes a significant increase of
the drag coefficient. This hypothesis seems to be supported by numerical simulations.
Esmaeeli, Ervin & Tyggvason (1993) showed two-dimensional simulations of bubbles
in a periodic array and found that the rise velocity was sharply reduced when the
bubbles started to wobble. Esmaeeli & Tryggvason (1999) also found that unsteady
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motion reduced the rise velocity of an array of bubbles, although in this case the
unsteady motion resulted from the bubble interactions.

Figure 15 summarizes the theoretical results for the velocity field induced by an
ellipsoidal bubble rising on a straight line. The vertical velocity on the symmetry axis
is plotted against the distance behind the bubble. The potential flow result shows
a rapid decrease of the velocity since it does not predict a wake (1% the bubble
velocity at 5R behind the bubble). For a clean bubble, the DNS shows a long wake
(5% of the bubble velocity at 145R behind the bubble). The predicted velocity tends
towards the 1/z decay predicted by the far-wake theory; however the theory is not
valid at z = 150R. For contaminated bubbles, DNS results exhibit a large overshoot
of the velocity in the region just behind the bubble and a longer extension of the
wake. Hereafter, we will compare the measurements with the potential flow prediction
and the clean-bubble DNS. The far-wake theory will not be used since the region
in which measurements were made was at the limit of the validity of this theory.
The comparison between DNS of the region around a contaminated bubble and the
measurements is shown in figure 15 (see § 4.4 for the description of the experimental
results). These results confirm that the bubble is hydrodynamically clean.

4.2. Liquid velocity close to the bubble (−10 6 z 6 10R)

In the first instance, results for set A are considered. These measurements correspond
to investigations up to a distance of about 10 radii from the bubble. Two components
of the liquid velocity are measured at a fixed point located at 300 mm above the
injection point. In this region the bubbles have reached their terminal velocity and
their trajectory is represented well by a plane zigzag. Equations (1) and (3) give
the bubble-centre coordinates relative to the LDA measurement point. Hereafter,
the liquid velocity will be presented by setting the origin of the coordinates at the
bubble-centre location.

Figure 16 gives the results of four typical experimental runs. The main graphs
show the liquid velocity, uz and uy , versus the vertical distance to the bubble (positive
z corresponds to velocity samples detected behind the bubble). The insets show the
bubble trajectory relative to the measurement point. Comparisons with potential flow
and DNS are shown. Since these theoretical velocity fields are known only for a
bubble in translation, we proceed as follows. For each instant, the theoretical velocity
fields are rotated in order to orient the z-axis parallel to the direction of the real
bubble. Then, the predicted velocity at the point corresponding to the measuring
volume is determined. This velocity is known for the potential flow field because it is
determined analytically. However, for the DNS results the velocity at the measurement
point is obtained by interpolation on the mesh grid. For both, the predicted velocities
are arbitrarily set to zero whenever the bubble intersects the measurement point. The
wavelength of path oscillations is approximately 50 mm and the bubble orientation
changes by approximately 30◦ over a travel distance of 10R. Since the predicted
velocities correspond to a rectilinear moving bubble, these comparisons are relevant
only for distances less than 5R.

In the first example (figure 16a), the bubble axis is vertical at the instant the bubble
centre coincides with the measurement point. In front of the bubble, the potential
theory and the DNS match the experiments. The vertical velocity quickly increases
from zero to V and the horizontal velocity is negligible since the measurement point
is on the symmetry axis. Behind the bubble, the vertical velocity decreases from V
to zero but the gradient is significantly smaller than that in front of the bubble. This
fore–aft asymmetry due to the presence of a wake is ignored by the potential theory
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but correctly predicted by DNS. Concerning the horizontal velocity, the negative
values detected behind the bubble are predicted neither by the potential theory nor
the DNS.

The second bubble (figure 16b) also intersects the measurement point, but its centre
passes it at a horizontal distance of 0.9R and its axis is not vertical. In front of the
bubble, the off-centring of the bubble axis causes decreased vertical velocities and
increased horizontal velocities. Behind the bubble, the decrease of the vertical velocity
is symmetric with the increase that is observed in front of the bubble. Negative
horizontal velocities are also detected. These negative values are generated by the
liquid that passes round the bubble to ensure conservation of the liquid volume.
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Because of this particular bubble trajectory, the measuring volume is located outside
the wake. Consequently, the potential theory provides a good approximation of the
measurements although the DNS results remain slightly more accurate.

In the third example (figure 16c), the bubble does not intersect the measurement
point. As in the preceding example, all the measurement points are located outside
the wake. The measured velocities can thus be explained by the liquid displacement
resulting from mass conservation and so the measurements, DNS and potential theory
are in agreement.

The fourth example (figure 16d) represents another kind of trajectory for which the
bubble orientation changes as it passes close to the measurement point. For z < 2R,
since the measurement point lies outside the wake, potential theory and DNS predict
the measurements well. For z > 2R, the change in the bubble orientation causes
the wake to move across the measurement point. The vertical velocity increases to a
maximum at z = 7R and the horizontal velocity strongly fluctuates. The DNS predicts
an increase of the vertical velocity behind the bubble, but considerably underestimates
the intensity of the vertical and horizontal velocities. These discrepancies are taken to
indicate an intense structure in the near wake of the bubble. This structure is detected
while the bubble direction changes and has no equivalent in the axisymmetric DNS. It
is probably a vortex generated at the bubble rear and related to the three-dimensional
instabilities.

An analysis of the 81 experimental runs of set A revealed a different trajectory
for each measurement. The comparison with the DNS and potential flow leads to
the conclusion that two regions can be distinguished in the near flow field. In front
of the bubble and far from its trajectory behind, the potential theory and DNS give
the same results and match the experiments. (The DNS predictions are just slightly
more accurate since they take into account the viscous effect in the boundary layer
and the flow separation behind the bubble.) Behind the bubble an important wake
is present. Depending on the exact region investigated, the DNS either provides
correct predictions (figure 16a–c) or not (figure 16d). The near wake seems to be a
combination of the steady wake predicted by the axisymmetric DNS and unsteady
vortices that detach from the bubble rear.

By combining all the data provided by set A it is possible to reconstruct the velocity
field around the bubble. The results of each velocity sample are transformed in the
following way: (i) the measurement point is translated in order to place the bubble
centre at the frame origin and (ii) the measured velocity is rotated in order to align
the bubble axis with the z-axis. This second operation raises two difficulties. First, the
LDA sampling times of the two velocity components do not coincide. Second, only
two components of the bubble velocity are available. The first problem was addressed
by ensuring that the two LDA signals coincided. This was achieved using linear
interpolation (with a time step of 0.1 ms) to regularly resample the signals between
any consecutive samples separated by less than 5 ms. After this operation only the
velocity samples that were present on two signals with a time separation less than
0.1 ms were retained. The second problem was solved by assuming that the velocity
field close to the bubble was axisymmetric. By assuming a zero azimuthal component
it was possible to determine the two velocity components in the meridian plane that
contained the bubble axis.

The reconstructed velocity field is shown in figure 17. In this figure only the region
in which bubble orientation changes can be neglected is shown. The velocity is repre-
sented in the bubble frame. The upper part of the figure displays the measurements
whilst the lower part shows the DNS results at the locations where experimental
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Figure 17. Near velocity field represented in the bubble frame. Upper part: results of the 81
experimental runs of set A; lower part: DNS predictions at the points where measurements are
available.

samples are available. This representation confirms the existence of two regions. In
the potential region, the measurements are in excellent agreement with the DNS (and
the potential theory). In the wake, different velocities samples can be obtained at the
same location. The flow there is neither axisymmetric nor steady due to the presence
of unsteady wake vortices.

4.3. Liquid velocity far from the bubble (z 6 150)

The far wake is now examined from the experimental results of set B. Figures 18
and 19 give two typical examples of liquid velocity recordings. The velocity is plotted
versus the bubble elevation relative to the measurement point. In each figure we
compare the results for two bubbles that have similar trajectories. The velocity of
bubbles that have the same trajectory is similar (the small discrepancies observed are
not significant owing to the slight differences in the trajectories). This was confirmed
by five bubble pairs belonging to set B and one belonging to set A. This indicates
that although the wake is not steady it remains deterministic.

For the examples selected, negligible velocities are measured close to z = 0 since
the minimum distance between the bubble and measurement point is larger than
5R. Significant velocities are nevertheless detected for z larger than 20R. The vertical
velocity (figures 18b–19b) is always positive, increasing from zero to a maximum
and then decreasing smoothly back to zero. The horizontal velocity (figures 18c–19c)
exhibits positive and negative values. These general trends are confirmed by the 47
runs of set B for which the vertical velocity always exhibits positive bump-shaped
profiles (figures 18b–19b) whilst the horizontal velocity shows negative or positive
bump-shaped profiles (figure 19c) or wavy profiles (figure 18c). The magnitude of the
horizontal velocity is always significantly smaller than that of the vertical one.

The above results are interpreted as that, far from the bubble, a quasi-steady wake
develops around the bubble-centre trajectory. The liquid velocity is parallel to the
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bubble trajectory. Since the maximal trajectory inclination is 30◦, vertical velocities are
always positive and larger than the horizontal velocities. A positive vertical-velocity
profile is detected at times for which the wake moves across the measurement point.
On the other hand, the sign of the horizontal velocity depends on both the location
of the measurement point and the local orientation of the wake.

4.4. Decay of the liquid velocity with the distance from the bubble

The previous interpretation implicitly assumes that the velocity induced by the wake
vortices is small compared to that generated by the quasi-steady wake. It is useful to
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check this assumption by comparing the experimental decrease of the liquid velocity
with the DNS prediction.

In figure 20, all the velocity measurements are plotted against the bubble elevation
relative to the measurement point. Since the orientation of the bubble and its hori-
zontal location are not taken into account, the results exhibit a considerable scatter.
However, this scatter is not considered to be problem since the current focus is on
the maximum velocity. To this end the maximal velocities predicted by DNS and
potential theory are also represented in figure 20. For each z, we determined the
maximal velocity predicted by the DNS (or potential theory) over all the possible
bubble orientations (from 0 to 30◦ in steps of 1◦). Note that, for z larger than 2R, the
largest DNS velocity magnitude is the velocity uz max computed on the symmetry axis.
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The maximum vertical velocity is hence uz max and the maximal horizontal velocity is
uz max multiplied by the sine of the maximum angle (30◦).

In front of the bubble the liquid velocity is predicted well by both the potential
theory and DNS. Behind the bubble, an intense and long wake develops (5% of
the bubble velocity at a distance of 150R behind the bubble). The potential flow
shows an unrealistic rapid decay. On the other hand, most of the velocity samples
are located under the DNS maximum. Among the few measurements that exceed
the DNS maximum, the largest overshoots are for the horizontal velocity in the near
wake. The DNS thus provides a satisfactory prediction of the general decrease of the
maximum velocity over the whole range of distances investigated. This is confirmed
by the logarithmic representation in figure 15.

Since the bubble motion exhibits oscillations, the liquid velocity is neither steady
nor axisymmetric. Despite this lack of symmetry, the decrease of the velocity in the
bubble wake is predicted well by the axisymmetric DNS. The structure of the wake
seems to be controlled by two mechanisms. The first generates a quasi-steady wake
that spreads around the bubble-centre trajectory. Its contribution to the velocity field
is predicted well by the steady flow computed by the axisymmetric DNS provided the
local orientation of the wake is taken into account. The second mechanism is related
to the wake instability: the axisymmetric solution is unstable and unsteady vortices
are generated at the bubble rear. However, except in the near wake, these vortices do
not significantly influence the decay of the wake.

5. Concluding remarks
The present work deals with isolated air bubbles rising in still water. Both the

bubble and liquid motions were investigated and the influence of surfactants was
proved to be negligible. Since the bubble equivalent diameter was fixed to 2.5 mm
(We = 3.6, Re = 8× 102), the present results are characteristic of the regime existing
between the onset of path oscillations (d = 1.82 mm, We = 3.3) and that of shape
oscillations (d = 3.5 mm, We = 4.2). We observed that after the initial acceleration
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stage, the bubble starts oscillating on an almost plane zigzag. This plane trajectory
then progressively transforms into a helix, which is the final stable trajectory. The
current investigation focuses on the transition between the zigzag and helical paths.

The bubble shape is found to be similar to an oblate ellipsoid of constant shape.
At each instant, the symmetry axis of the ellipsoid is parallel to the bubble velocity,
and the velocity magnitude is constant. Two harmonic modes are involved in path
oscillations. They correspond to horizontal oscillations of the bubble velocity in two
perpendicular directions. They have the same frequency and are π/2 out of phase
with each other. In the region under investigation (215 6 z 6 490 mm), the amplitude
of the primary mode is saturated while the amplitude of the secondary mode was
always observed to be increasing. Two slow motions are superimposed onto this
two-mode oscillation. The first is a slow horizontal drift that causes the trajectory
axis to be slightly inclined. The second is a slow rotation of the principal directions
of oscillations. These phenomena are not reproducible and have no influence on
the two-mode dynamics. Their combination with the second-mode growth leads to
complex trajectories. The characteristics of the bubble motion cannot therefore be
determined without a complete three-dimensional interface tracking.

The liquid velocity induced by the bubble motion is deterministic and characterized
by two regions. In front of and next to the bubble, the flow is potential. Behind
the bubble, an intense long wave develops. The flow in the wake includes two
contributions due to a quasi-steady wake that spreads around the bubble trajectory
and wake vortices that are generated at the bubble rear. These vortices were described
in detail by Lunde & Perkins (1997) and Brücker (1999). They have a strong influence
on the flow just behind the bubble and on the hydrodynamic force that acts on it.
They are the origin of the bubble path oscillations that cause the increase of the
drag coefficient (Cd = 0.1 for the steady flow induced by a rectilinear rising bubble,
Cd = 0.2 here). Nevertheless, they do not induce large liquid velocities and their
influence on the intermediate- and far-wake intensity is small. The velocity decay
behind the bubble is predicted well by the axisymmetric wake around a rectilinear
rising bubble provided the local orientation of the wake is taken parallel to the bubble
trajectory.

The authors would like to thank C. Daniel and D. Legendre for their help with
the numerical simulations. K.E. gratefully acknowledges support from the Research
Council of Norway.
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